ARTICLE IN PRESS

BioSystems xxx (2013) xxx-xxx

Contents lists available at SciVerse ScienceDirect

BioSystems

journal homepage: www.elsevier.com/locate/biosystems

Insight into the binding mode and the structural features of the pyrimidine derivatives as human A_{2A} adenosine receptor antagonists

³ Q1 Lihui Zhang^a, Tianjun Liu^{b,**}, Xia Wang^a, Jinan Wang^a, Guohui Li^c, Yan Li^d, Ling Yang^e, ⁴ Yonghua Wang^{a,*}

^a Bioinformatics Center, Northwest A & F University, Yangling, Shaanxi 712100, China

^b College of Economics and Management, Northwest A & F University, Yangling, Shaanxi 712100, China

^c Laboratory of Molecular Modeling and Design, Chinese Academy of Sciences, Dalian, Liaoning 116024, China

^d School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116012, China

e Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian, Liaoning 116023, China

ARTICLE INFO

Article history:
 Received 23 January 2013

Received in revised form 7 April 2013

Accepted 24 April 2013

- 17
- 18 Keywords:

10

11

- 19 Pyrimidine derivatives
- 20 Human A_{2A} adenosine receptor

21 Molecular docking

- 22 Molecular dynamics
- 23 Thermodynamic analysis
- 24 3D-QSAR

ABSTRACT

The interaction of 278 monocyclic and bicyclic pyrimidine derivatives with human A_{2A} adenosine receptor (AR) was investigated by employing molecular dynamics, thermodynamic analysis and threedimensional quantitative structure–activity relationship (3D-QSAR) approaches. The binding analysis reveals that the pyrimidine derivatives are anchored in TM2, 3, 5, 6 and 7 of A_{2A} AR by the aromatic stacking and hydrogen bonding interactions. The key residues involving Phe168, Glu169, and Asn253 stabilize the monocyclic and bicyclic cores of inhibitors. The thermodynamic analysis by molecular mechanics/Poisson Boltzmann surface area (MM-PBSA) approach also confirms the reasonableness of the binding modes. In addition, the ligand-/receptor-based comparative molecular similarity indices analysis (CoMSIA) models of high statistical significance were generated and the resulting contour maps correlate well with the structural features of the antagonists essential for high A_{2A} AR affinity. A minor/bulky group with negative charge at C2/C6 of pyrimidine ring respectively enhances the activity for all these pyrimidine derivatives. Particularly, the higher electron density of the ring in the bicyclic derivatives, the more potent the antagonists. The obatined results might be helpful in rational design of novel candidate of A_{2A} adenosine receptor antagonist for treatment of Parkinson's disease.

© 2013 Elsevier Ireland Ltd. All rights reserved.

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

25 1. Introduction

Human adenosine receptors are members of seven 26 transmembrane-spanning G protein-coupled receptor (GPCR) 27 superfamily, delineated into four subtypes namely the A1, A2A, 28 A_{2B} and A₃ receptors, which have been considered as potential 29 therapies for neurodegenerative (Morelli et al., 2009), immune, 30 and inflammatory disorders (Blackburn et al., 2009), cancer 31 (Fishman et al., 2009) and cardiac disease (Headrick and Lasley, 32 2009). Among them, the A_{2A} adenosine receptor (A_{2A} AR) is highly 33 expressed in the basal ganglia and functionally coupled with the 34 activity of dopamine-sensitive neurons (Drabczynska et al., 2011). 35 Recent evidences (Bara-Jimenez et al., 2003; Jenner et al., 2009; 36 Ongini et al., 1997; Richardson et al., 1997) have highlighted A2A 37 38 AR as a potential therapeutic target for diseases such as Parkinson's disease (PD), which is a neurodegenerative disorder characterized

* Corresponding author. Tel.: +86 029 87092262.

** Corresponding author. Tel.: +86 029 87081157.

E-mail addresses: Ltj168168@126.com (T. Liu), yh_wang@nwsuaf.edu.cn (Y. Wang).

0303-2647/\$ – see front matter © 2013 Elsevier Ireland Ltd. All rights reserved. http://dx.doi.org/10.1016/j.biosystems.2013.04.003 by motor dysfunctions arising from the underlying degeneration of dopaminergic neurons of the basal ganglia (Frau et al., 2011; Schwarzschild et al., 2006). Antagonism of the A_{2A} AR reduces adenosine signaling, enhances the sensitivity of the dopaminergic neurons and restores balance to the signaling pathway controlling over muscle movement (Fenu et al., 1997; Kanda et al., 1998), thus results in lessening effectively motor dysfunctions of PD.

For the binding of the A_{2A} AR antagonists, the amino acids in transmembrane helix (TMs) 3, 5, 6, and 7 of A_{2A} AR are vital, which are indicated by the previously site-directed mutagenesis assays (Carlsson et al., 2010; Ivanov et al., 2007). Mutations of some residues, such as Glu169(TM5), His250(TM6), Asn253(TM6) and Ile274(TM7), disrupt antagonist interactions resulting in the dramatic loss of binding, while the replacements of Ser277(TM7) and Ser281(TM7) produce moderate changes in binding affinities (Cristalli et al., 2008; Kim et al., 1995, 2003). Recently, the structures of the membrane-spanning heptahelical domain of human A_{2A} AR with antagonists have been solved employing X-ray crystallography (Congreve et al., 2012; Dore et al., 2011; Jaakola et al., 2008). The key residues obtained from the mutagenesis studies directly contact with the bound antagonists by hydrogen bonding and hydrophobic interaction (Dore et al., 2011). Besides, a π -stacking

Please cite this article in press as: Zhang, L., et al., Insight into the binding mode and the structural features of the pyrimidine derivatives as human A_{2A} adenosine receptor antagonists. BioSystems (2013), http://dx.doi.org/10.1016/j.biosystems.2013.04.003

63

64

65

66

67

68

60

72

73

74

75

77

78

79

80

81

82

87

88

80

or

91

92

07

94

95

96

L. Zhang et al. / BioSystems xxx (2013) xxx-xx

interaction between Phe168(TM5) and the heterocyclic moiety of the ligands provides additional driving force for stable binding of the A_{2A} antagonists (Ivanov et al., 2009; Kiran et al., 2012). However, among these key sites, it remains ambiguous whether all antagonists with diverse structures interact at the same site, or multiple sites within the A_{2A} receptor.

The early developed adenosine receptor antagonists are xanthines, such as caffeine and theophylline, which display poor pharmacophysiological properties and no selectivity for A_{2A} recep-70 tor (Sauer et al., 2000). After modification of the xanthine nucleus, 71 the selective 8-styrylxanthine derivatives were developed. However, low water solubility has hindered further application of these compounds (Kase et al., 2003). Thus considerable interests have been concentrated in development of well tolerated and orally bioavailable antagonists, stradefylline for example 76 (Knutsen and Weiss, 2001), which has completed the clinical trials for treating Parkinson's disease (Bara-Jimenez et al., 2003). Unfortunately, it failed to meet the primary end-point of efficacy trials and was declined by FDA in 2008 (Gillespie et al., 2009a). To quest more A2A antagonists with higher potency, the non-xanthine type heterocyclic antagonists have been developed, which exhibited excellent preclinical physiochemical and pharmacokinetic profiles (Gillespie et al., 2008a, 2008b, 2008c, 2009a, 2009b, 2009c), and some of which have displayed strong in vivo potency and high oral bio-availability. Particularly, the compound 3-(3-methyl-4-amino-benzyl)-5-amino-7-(furan-2-yl)-triazolo[4,5-d]-pyrimidine has successfully completed phase I clinical study (Gillespie et al., 2009a). However, the discovery of high selective, potent and well tolerated antagonists with good oral bioavailability still remains to be a big challenge. In order to facilitate the drug discovery process, in silico methods as a productive and cost-effective technology, such molecular modeling, three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis, can be used in combination with experimental practices.

Recently, 3D-QSAR analysis has been employed to probe the 97 structural features of the A_{2A} antagonists, such as pyrazolo-98 triazolo-pyrimidine antagonists (Michielan et al., 2008). The 99 specific structural features defined by the comparative molecu-100 lar field analysis (CoMFA) and comparative molecular similarity 101 indices analysis (CoMSIA) are essential for enhancing ligand-102 binding affinity in the A2A AR. A negative charge on the heterocyclic 103 nitrogen, together with volume and lipophilicity of the whole 104 molecules are important contributors to the selectivity of adeno-105 sine antagonists. However, there still exist several problems about 106 the molecular mechanism of pyrimidine derivatives as antagonists 107 of human A_{2A} AR: (1) How do the derivatives interact with the 108 human A2A AR? (2) What is the similarity/difference of the binding 109 sites between these antagonists and other known A2A antagonists? 110 (3) What are the structural features of the derivatives indispens-111 able for improvement of the potency? Here, the combination of 112 molecular docking, molecular dynamics and thermodynamic anal-113 ysis is performed to elucidate the probable binding mode of the 114 antagonists within the human A2A AR. In addition, 3D-QSAR analy-115 ses using the CoMFA and CoMSIA methodologies are employed to 116 insight into the structural features of these derivatives. The mech-117 anism of interaction of the pyrimidine derivatives with the A_{2A} AR 118 and the characteristic structure of the derivatives might facilitate 119 discovery of more efficient drug candidates for the treatment of PD. 120

2. Materials and methods 121

2.1. Data set 122

123 278 monocyclic and bicyclic pyrimidine derivatives (Gillespie et al., 2008a, 2008b, 2008c, 2009b, 2009c, 2009d) as the 124

human A2A AR antagonist were collected with a wide activ-125 ity ranging from 5.2 to 9.2 (pK_i values, converted by the 126 corresponding K_i values), which were classified artificially 127 into three classes, i.e., I: pyrimidine and triazine derivatives 128 (97 compounds); II: pyrazolo[3,4-d]pyrimidines, pyrrolo[2,3-129 d]pyrimidines, triazolo[4,5-d]pyrimidines and 6-arylpurines (120 130 compounds); III: thieno[3,2-d]pyrimidines (61 compounds). All 131 compounds of each class were used as a dataset and then divided 132 into a training set and a test set in a ratio of 3:1 by considering 133 both the distribution of the inhibitory activity and the structural 134 diversity. The training set was used to construct 3D-QSAR models 135 and the test set (asterisked molecules in Table S1) was kept to test 136 the actual prediction of the model. All molecules of three datasets 137 with structures and biological data (pK_i) are shown in Table S1 Q2 138 (Supplementary data). 139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

2.2. Molecular modeling and alignment

The three-dimensional models of all compounds were constructed by using the SYBYL package (Tripos Associates, St. Louis, MO, USA). All compounds were added with Gasteiger-Huckel charges and minimized using the Tripos force field (Clark et al., 1989) with the distance-dependent dielectric and the Powell gradient algorithm (convergence criterion of 0.05 kcal/mol). Two different alignment methods, namely, the ligand- and receptorbased alignments, were adopted to obtain the optimal 3D-OSAR model. In the first method, all compounds in each dataset were aligned to the template compound (I 92, II 111, and III 45 selected based on the highest potency) by the Align-Database function in SYBYL package. In the second method, the bioactive conformations of all compounds were firstly derived from docking and then processed by means of the first method. The details have been described in our previous work (Wang et al., 2010; Zhang et al., 2011).

2.3. Docking

In order to compare the binding sites, the latest A2A AR (3PWH.pdb) with some mutations in the crystal structure (3EMS.pdb) was chosen, obtained from the Protein Data Bank (http://www.rcsb.org/pdb). The missing residues from 150 to 157 in the EL2 region were reconstructed by using MODELLER software (Sali and Blundell, 1993). The missing hydrogen atoms and side-chain were added in stereochemically preferred conformations. Then, Kollman charges were added to the protein, while Gasteiger–Hückel charges (Gasteiger and Marsili, 1980) were assigned to all ligands. Subsequently, docking was performed with Autodock using Lamarckian Genetic Algorithm (LGA) (Morris et al., 1998). For each kind of ligand atoms, $60\text{\AA} \times 60\text{\AA} \times 60\text{\AA}$ 3D grids centered on the binding site with 0.375 Å spacing were calculated using Auto-grid3 (Morris et al., 1996). Parameters for the docking are as follows: random starting position and conformation; population size of 50; maximal mutation of 2 Å in translation and 50 degrees in rotations; maximal energy evaluations of 2.5×10^6 and maximal generations of 2.7×10^4 ; elitism of 1; mutation rate of 0.02 and crossover rate of 0.8; local search frequency of 0.06; and 1.5 million energy evaluations (Osterberg et al., 2002). After 100 trials of each docking, the more energetically favorable conformations of all compounds were selected by comparing docking poses and considering the total energy value, and then aligned together for CoMFA and CoMSIA modeling. The docked complexes with the most potent compound in each class were selected for subsequent analyses.

Please cite this article in press as: Zhang, L, et al., Insight into the binding mode and the structural features of the pyrimidine derivatives as human A2A adenosine receptor antagonists. BioSystems (2013), http://dx.doi.org/10.1016/j.biosystems.2013.04.003

L. Zhang et al. / BioSystems xxx (2013) xxx-xx

2.4. Molecular dynamics simulation 18/

MD simulations for these docked complexes were implemented 185 with the Gromacs 4.5.4 (Hess et al., 2008) package. Each complex 186 was soaked in a SPC water box (Berendsen and Strsstsma, 1987), 187 keeping a minimum distance of 10 Å between the solute and each 188 face of the box. The system was neutralized by adding 7 Cl⁻ coun-180 terions. The Gaff (Wang et al., 2004) and AMBER99 (Hummer et al., 100 2001) force fields were used to describe the ligand and protein, 191 respectively. To release the internal strain energies of the entire 192 system gradually, the whole system was subjected to 50,000 steps 193 of energy minimization. Subsequently, MD simulation of 200 ps at 194 300 K and 1 atm was performed to equilibrate the system and to 195 adjust the density of the solvation box. After all these preparative 196 steps, a production simulation of 10 ns long was performed with 197 the time interval of 2 fs under constant temperature (300 K) and 198 pressure (1 atm). Temperature of the system was controlled by a V-199 rescale thermostat (Bussi et al., 2007) with the coupling constant 200 of 0.1 ps, and pressure were regulated by the Parrinello-Rahman 201 pressure coupling method (Parrinello, 1981). The particle-mesh-202 Ewald (PME) method (Darden et al., 1993) was employed to treat 203 204 the long-range electrostatic interaction with a cut off of 10.0 Å. Dur-205 ing the entire simulation process, the coordinate trajectory of each system was recorded every 2 ps for subsequent analyses. 206

2.5. Binding free energy calculation 207

The binding free energies of all the systems obtained from the 208 last 500 snapshots MD trajectories were calculated by using the 209 molecular mechanics/Poisson Boltzmann surface area (MM-PBSA) 210 approach integrated in AMBER 10 (Case et al., 2008). The following 211 expression was used to describe the binding free energy (ΔG_{bind}): 212 213

²¹⁴
$$\Delta G_{\text{bind}} = \Delta H_{\text{bind}} - T \Delta S_{\text{bind}}$$
 (1)

$$\Delta H_{\text{bind}} = \Delta E_{\text{gas}} + \Delta G_{\text{solv}}$$
(2)

²¹⁶
$$\Delta E_{\text{gas}} = \Delta E_{\text{ele}} + \Delta E_{\text{vdW}} + \Delta E_{\text{int}}$$
 (3)

$$\Delta G_{\text{solv}} = \Delta G_{\text{PB}} + \Delta G_{\text{nonpolar}}$$
(4)

$$\Delta G_{\text{nonpolar}} = \gamma(\text{SASA}) + \beta \tag{5}$$

Molecular mechanical free energy (ΔE_{gas}) was divided into con-219 tributions from the electrostatic potential (ΔE_{ele}) and the van der 220 Waals (ΔE_{vdW}) potential. Solvation free energy (ΔG_{solv}) was com-221 posed of two parts, the polar solvation free energy (ΔG_{PB}) and the 222 nonpolar solvation free energy ($\Delta G_{nonpolar}$). The nonpolar solva-223 tion energy was calculated based on the solvent-accessible surface 224 area (SASA) which was estimated using the Molsurf program with a 225 probe radius of 1.4 Å (Sanner et al., 1966), as well as the parameters 226 of $\gamma = 0.00542$ kcal/Å² and $\beta = 0.92$ kcal/mol. The dielectric constant 227 was set to 1 for the interior solute and 80 for the exterior solvent. 228 The final ΔE_{gas} and ΔG_{solv} values for each protein–ligand binding 229 mode were taken as the averages of the respective ΔE_{gas} and ΔG_{solv} 230 231 values. To evaluate entropy contributions ($T\Delta S$), a full energy minimization was first performed on each species (receptor, ligand, or 232 complex) prior to the normal-mode analysis. 233

2.6. 3D-QSAR analysis 234

CoMFA and CoMSIA analyses are performed to construct good 235 predictive QSAR models and to analyze the effect of each field on the 236 237 activities of the pyrimidine derivatives. In CoMFA, the steric (S) and 238 electrostatic (E) potential fields were calculated by using the Tripos force field (Clark et al., 1989) at each lattice intersection of a regularly spaced (2 Å) grid. A sp³ carbon atom with radius 1 Å and charge +1 was served as the probe atom to calculate the fields. The steric and electrostatic contributions were truncated at a default value (30 kcal/mol). In CoMSIA, five similarity indices descriptors-steric (S), electrostatic (E), hydrophobic (H), hydrogen bond donor (D) and hydrogen bond acceptor (A), were calculated at the same lattice box used in the CoMFA calculations with a common probe atom of 1 Å radius, as well as the charge, hydrophobicity, and hydrogen bond properties of +1. CoMSIA similarity indices (AF) for a molecule *i* with atoms *i* at the grid point *q* are calculated by Eq. (1') as follows:

$$A_{F,K}^{q}(j) = -\sum \omega_{\text{probe},k} \omega_{ik} e^{-ar_{iq}^{2}}$$
(1')

where k represents the steric, electrostatic, hydrophobic, hydrogen-bond donor and acceptor properties; *i* is the summation index over all atoms of the molecule *j* under investigation; ω_{ik} is the actual value of the physicochemical property k of atom i; r_{ia} is the mutual distance between probe atom at grid point q and atom *i* of the test molecule; $\omega_{\text{probe},k}$ is the value of the probe atom. The attenuation factor α was set to the default value of 0.3.

Partial least-squares (PLS) method was applied to generate 3D-QSAR models by linearly correlating the CoMFA/CoMSIA descriptors to the observed biological activities. To build more reasonable QSAR models, molecular descriptors were calculated using the DRAGON (http://www.talete.mi.it/index.htm), and selected using the stepwise linear regression method in R software (www.r-project.org). The best relevant and meaningful descriptors were further put into the PLS analysis. In this method, the optimal number (N_c) of components was determined by leave-one-out (LOO) cross-validation method with a cross-validation coefficient (q^2) . Non-cross-validated correlation coefficient (r_{ncv}^2) was calculated subsequently based on the optimum number of components. In addition, the statistical significance of the models was described by the standard error of estimate (SEE) and ratio of $r_{ncv}^2(F)$ and standard error of prediction (SEP). The predictive correlation coefficient $r_{\rm pred}^2$, based on the test set molecules, was calculated using Eq. (2').

$$r_{\rm pred}^2 = 1 - \left(\frac{\rm PRESS}{\rm SD}\right) \tag{2'}$$

where SD is the sum of squared deviations between the biological activities of the test set molecules and the mean activities of the training set molecules, and PRESS is the sum of squared deviation between the actual and predicted activities of the test set molecules. The CoMFA/CoMSIA results were graphically interpreted by field contribution maps using the "STDEV*COEFF" field type. To validate the 3D-QSAR models, the rm2 metrics for all the three datasets were calculated using this web application (accessible from http://aptsoftware.co.in/rmsquare/) (Ojha et al., 2011; Roy et al., 2012, 2013).

3. Results and discussion

3.1. Binding mode of human A_{2A} adenosine receptor

In the present study, dockings of all compounds into the human A_{2A} AR were carried out, and the docked complexes of A_{2A} AR with the most active ligands (I 92, II 111, and III 45) were chosen as the templates to study the binding modes of the ligands in the receptor. To obtain the "real" bioactive conformation, 10 ns molecular dynamic simulation was employed to make the structure of the docking complex more reasonable by considering both the impacts of the receptor flexibility and the effects of water solvation on the complex. After 6 ns, all complexes reached a stable conformation

3

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273 274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

Please cite this article in press as: Zhang, L, et al., Insight into the binding mode and the structural features of the pyrimidine derivatives as human A2A adenosine receptor antagonists. BioSystems (2013), http://dx.doi.org/10.1016/j.biosystems.2013.04.003

297

298

ARTICLE IN PRESS

L. Zhang et al. / BioSystems xxx (2013) xxx-xxx

Fig. 1. Plot of the root-mean-square deviation (RMSD) of the docked complex structures of human A_{2A} adenosine receptor with the ligand (I 92, II 111, and III 45) versus the MD simulation time.

revealed by root-mean-square deviation (RMSD, Fig. 1), which were then extracted as the candidate for the subsequent binding study.

As illustrated in Fig. 2, the binding poses for three kinds of 200 the derivatives reveal a similar binding mode within the A_{2A} 300 AR. This common binding motif involves polar interactions with 301 Glu169(5.30) and Asn253(6.55) side chain, non-polar interactions 302 with Val84(3.32), Leu249(6.51), Met270(7.35) and Ile274(7.39), as 303 well as π -stacking between aromatic moieties of the ligands and 304 the conserved Phe168 (5.29) side chain of the receptor (Residue 305 numbers in parentheses are based on Ballesteros-Weinstein 306 nomenclature 42) (Ballesteros and Weinstein, 1995). Moreover, 307 during all simulations, we find that Asn253(6.55) are capable of 308 forming stable H-bonding with ligands, indicating that this residue 309 310 plays a key role in maintaining the binding poses of different heterocyclic compounds. Interestingly, mutations of these H-bonding 311 residues (Glu169(5.30), Asn253(6.55), Leu249(6.51), His250(6.52) 312 and His278(7.43) as shown in Fig. 2), have been reported to dis-313 rupt antagonist interactions (Jaakola et al., 2010; Langmead et al., 314 2012). Additionally, the aromatic π -stacking interactions between 315 Phe168(5.29) and the heterocyclic core of the ligands are essential 316 for high affinity of the antagonist, which has been demonstrated 317 by homology modeling and mutation studies (Ivanov et al., 2009; 318 Jaakola et al., 2010). 319

In addition to these core interactions, the A_{2A} AR antagonists have an aromatic group extending deeper into the binding pocket and/or flexible extensions toward the extracellular opening of the pocket. The imidazol-2-yl-methyl-NHCO moiety of Fig. 2A stretches toward TM6 and TM7 helix and deeps into a large pocket, suggesting that this part of the pocket can be exploited in ligand design. This imidazole ring is approximately 3.3 Å away from the so-called "toggle-switch" Trp246(6.48), and we speculate that the hydrophobic interaction between the imidazole ring and Trp246(6.48) will hinder the structural rearrangements necessary for activation, constraining the receptor in an inactive state (Jaakola et al., 2010). In Fig. 2B, the compound's (3-F-4-NH2)-benzyl moiety is also extended downward into the binding pocket and forms a hydrogen bond network with Ala59(2.57), Phe62(2.60), Ala63(2.61) and Ile80(3.28). The 4-methyl-thiazolyl moiety (Fig. 2C) extends toward TM5 and TM6 helix to make more favorable contacts with the binding pocket side chains. In addition, the furan moiety stretches to form predominantly hydrophobic interactions in the large pocket. In summary, we predicted that the π -stacking interaction with Phe168(5.29) and hydrogen bonds with the Glu169(5.30) and Asn253(6.55) side chains are key features for the binding of the pyrimidine derivatives to the TM2, 3, 5, 6 and 7 of A_{2A} AR.

322

323

324

325

326

327

328

320

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

3/10

350

351

352

353

354

355

356

357

358

359

360

A comparison of the binding poses of A2A antagonist is made, contained the above derivatives, ZM241385 ((4-(2-[7-amino-2-(2-furyl)[1,2,4]-triazolo[2,3-a][1,3,5]triazin-5-yl amino]ethyl)phenol)), the xanthines xanthine amine congener (XAC) and caffeine in the crystal structure (Code: 3PWH, 3RFM and 3REY). ZM241385, XAC and caffeine bind in a similar position, mainly anchored by an aromatic stacking interaction with Phe168 from the second extracellular loop (ECL2), an aliphatic hydrophobic interaction with Ile274 and a hydrogen bonding interaction with Asn253 (Dore et al., 2011). These interactions are the same as that in the pyrimidine binding mode, playing a central role in coordinating the ring core of the A_{2A} antagonists. Besides, the hydrophobic surface supplied by Leu249 and Met270 is a common feature of the binding for these antagonists. Additionally, the non-planar configuration of antagonists accommodated by the pocket may result indifferent conformational preferences for the A_{2A} AR, potentially leading to unusual binding and/or functional properties of these ligands, such as the interactions with Ala63, Val84, His250 and His278. However, they differ in that Glu169

Fig. 2. Docked conformation derived for compounds (I 92, II 111, and III 45) with the allosteric binding site of A_{2A} AR. Model compound and allosteric binding site amino
 acid residues are shown as stick representation. Hydrogen bonding interactions are shown as green arrowhead lines; the aromatic π-stacking interactions are shown as red dashed lines. The nonpolar hydrogen was removed for clarity. (Red atom: oxygen; blue: nitrogen; yellow atom: sulfur; green atom: fluorine). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Please cite this article in press as: Zhang, L, et al., Insight into the binding mode and the structural features of the pyrimidine derivatives as human A_{2A} adenosine receptor antagonists. BioSystems (2013), http://dx.doi.org/10.1016/j.biosystems.2013.04.003

ARTICLE IN PRESS

L. Zhang et al. / BioSystems xxx (2013) xxx-xxx

Table 1

	$\Delta E_{\rm ele}$	$\Delta E_{ m vdw}$	$\Delta E_{ m gas}$	ΔG_{PB}	$\Delta G_{ m nonpolar}$	$\Delta G_{ m solv}$	$T\Delta S_{\rm bind}$	ΔG_{bind}
Ι	-17.2	-43.7	-60.9	21.7	-5.65	16.03	-15.04	-29.78
II	-7.5	-44.2	-51.7	14.4	-5.73	8.67	-10.78	-32.26
III	-0.65	-37.8	-38.5	9.47	-5.29	4.18	-17.63	-16.65

in the pyrimidine mode plays an important H-bond acceptor in 361 the structure-activity relationship, whereas in other modes it 362 has a less prominent role in the binding (Dore et al., 2011). In a 363 word, all candidate chemotypes of A2A antagonists are predicted 364 to share key features in the binding mode within the crystal 365 structure, including stacking interaction with Phe168, H-bond 366 interactions with Asn253 and Glu169 side chains, as well as an 367 aliphatic hydrophobic interaction with Ile274. The binding analy-368 sis presented above provides us with rich information about the 369 mechanism of interaction of the antagonists with A_{2A} AR, and this 370 in turn facilitates our ability to understand and further optimize 371 the interaction components for the pyrimidine derivatives binding 372 to the receptor. 373

374 3.2. Binding free energies

MM-PBSA calculations were performed to calculate the bind ing free energies for all of the MD-simulated binding structures,
 and the calculated free binding energies with the individual energy
 contributions are summarized in Table 1. We note that the binding
 free energies are determined by all of the contributions from the
 protein–ligand interactions in the gas phase, solvation/desolvation
 effects, and entropy change.

For all binding modes, the gas energies for ligands in A_{2A} AR 382 are the dominant contributor to interactive energies, which vary 383 among the three models. By further inspection of the individual 384 gas energy, it is clearly seen that the electrostatic contribution tilts 385 the balance toward a positive overall free energy of binding, with 386 the large variation for three models. The van der Waals interaction 387 energy contributes most to the binding of the ligands for all the 388 models. The solvation energy is a key element in correctly rank-389 ing inhibitors belonging to the same family. However, the positive 390 energies are unfavorable for the binding, indicating that all the 391 ligands are badly exposed to water interactions in the complex. 392 The nonpolar solvation energy contributes identically to the lig-393 ands, while the polar solvation affects the binding of the ligands in 394 an unfavorable way. Considering the entropy term, the calculated 395 binding free energies indicate that the bindings of the pyrimidine 396 derivatives in A_{2A} AR are stable and reasonable, and the rank is in 397 good agreement with that of the experimental ligand activities. 398

399 3.3. 3D-QSAR models

For the prediction of the binding affinity to human A_{2A} AR, 3D-QSAR analysis was applied to the pK_i of three sets of the pyrimidine derivatives based on the ligand-/receptor-based guided alignments. The composite structure diagram after alignment (Fig. 3) displays the structures of all compounds superimposed and illustrates how the structurally diverse set of compounds allow for a comprehensive probing of the effects of structural modifications in all regions. In this work, several CoMFA and CoMSIA models were developed. The best models are selected according to the best statistical results of PLS analysis, the greatest predictive power for the external test set and the good consistency between 3D-QSAR maps and docking results. Moreover, the qualities of the final models are assessed by inspection of the dispersion plots of the predicted versus experimental values (Fig. 4).

To build more reasonable QSAR models, several relevant and meaningful molecular descriptors (Table 2) were added into the PLS analysis. The involved descriptors in the model II are constitutional as follow: (i) two 3D-MoRSE descriptors: Mor21m, signal 21/weighted by atomic masses; Mor22e, signal 22/weighted by atomic Sanderson electronegativities. 3D-MoRSE descriptors take into account the 3D arrangement of the atoms without ambiguities (in contrast with those coming from chemical graphs), and indicate that atomic mass and electronegativity of a compound are concerned with the inhibitory activity. (ii) A molecular property: Alog P, the octanol-water partition Coefficient (log P) that is related to the hydrophobic character of the molecule describing effects such as the solvent behavior, polarizability, and partitioning through a cell wall (Culler et al., 1996). It does well describe the bioavailability of a compound to the organism. In addition, two molecular descriptors of the model III are Mor25m (3D-MoRSE signal 25/weighted by atomic masses) and Mats5v (Moran autocorrelation - lag 5/weighted by atomic van der Waals Volumes), seeming that the inhibitory activity of the compounds is modulated with a subtle balance of the two fields.

Table 3 gives a summary of the PLS analysis for the best models selected and reports the relative contributions of each model together with the optimal number of components, q^2 , r_{ncv}^2 , SEE, *F*, SEP and r_{pred}^2 . All the statistical parameters are reasonably high, which highlight the stability and predictability of the models. Further, the calculated average r_m^2 and Δr_m^2 values (Table 3) suggest the predictability of the models (for an acceptable QSAR model, the value of "Average rm2" should be >0.5 and Δr_m^2 should be <0.2) (Ojha et al., 2011; Roy and Mitra, 2012). It is noteworthy to find that the S, E and D fields comprehensively affect the inhibition potency of all pyrimidine derivatives. However, the compounds (I: 23, 27, 35, 54, 59; II: 10, 15, 32, 40, 60, 106; III: 8, 27, 42) regarded as outliers were omitted from the final analysis, since their differences

Fig. 3. Superimposition of all compounds in the training and test sets with common substructure shown in the upper left corner. (A) I: ligand-based alignment, (B) II: ligand-based alignment, (C) III: receptor-based alignment.

Please cite this article in press as: Zhang, L., et al., Insight into the binding mode and the structural features of the pyrimidine derivatives as human A_{2A} adenosine receptor antagonists. BioSystems (2013), http://dx.doi.org/10.1016/j.biosystems.2013.04.003

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

ARTICLE IN PRESS

Fig. 4. Plot of the predicted p*K_i* versus the experimental p*K_i* values for the models based on the training (filled black rhombuses) and test (filled red rhombuses) sets. (A) I: ligand-based CoMSIA model, (B) II: ligand-based CoMSIA model, (C) III: receptor-based CoMSIA model. The solid line is the regression line for the fitted and predicted bioactivities of training compounds. The outliers in test set are shown in yellow rhombuses. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

between the experimental and predicted pK_i values are more than 447 one logarithmic unit. Structural uniqueness underscores the outlier 448 status of compounds. For instance, the outlier status (III: 27 and 449 42) are attributed to the bulky substituent (benzo-thiopheneyl and 450 NH(CH₂)₂OH group) at the pyrimidine ring, which might lead to 451 steric bump with the active center residues. In conclusion, the high 452 statistical values of three models add the confidence in their util-453 ity for predicting the binding affinity of the pyrimidine derivatives. 454 And it also further corroborates the validity of pooled experimental 455 data in the present case. 456

457 3.4. 3D-QSAR contour maps

In the work, 3D coefficient contour plots from the PLS models I, II and III were developed to facilitate the spatial location
of the main interactions influencing the inhibitory potency. The
following color codes are used to point out the interactions in S,
E, H, D and A fields: green/blue/orange/cyan/magenta to indicate

favorable contour zones, yellow/red/white/purple/red-orange to represent unfavorable zones to affinity, respectively.

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

For the model I (Fig. 5), in agreement with experimentally determined ligand potencies at the A2A AR, bulky groups are predicted to be favorable at C4 and C6 of pyrimidine ring (green region), indicating that an increase in ligand bulk would improve binding affinity. The unfavorable regions for bulky group (yellow region) are observed near the substituents at C2, C5 and C6, and also suggest the boundaries of the binding pocket of thieno[3,2-d]pyrimidine. A bulky group at C2 would have an unfavorable steric interaction with the backbone of Met270 and the side chain of Asn253. In addition, the electrostatic contour plot delineates red regions surrounding the thieno[3,2-d]pyrimidine, in which increases in partial negative ligand charges enhance the binding affinity. The orange region, which is derived in the upper part of the group at C4, is favorable for hydrophobic interaction with Ala63, Ile66 and Ile274. In contrast, white regions, the favorable position of hydrophilic interaction, emphasize the importance of the hydrophilic group at C2 and C4 for tight binding. Moreover, the group at C4 is also near a purple region,

Table 2

Symbols for the molecular descriptors involved in the optimal models found.

Descriptor	Туре	Description
Mor21m	3D-MoRSE	3D-MoRSE – signal 21/weighted by atomic masses
Mor22e	3D-MoRSE	3D-MoRSE – signal 22/weighted by atomic Sanderson electronegativities
Mor25m	3D-MoRSE	3D-MoRSE – signal 25/weighted by atomic masses
Alog P	Molecular properties	Ghose–Crippen octanol–water partition coefficient (log P)
Mats5v	2D autocorrelations	Moran autocorrelation - lag 5/weighted by atomic van der Waals volumes

Please cite this article in press as: Zhang, L, et al., Insight into the binding mode and the structural features of the pyrimidine derivatives as human A_{2A} adenosine receptor antagonists. BioSystems (2013), http://dx.doi.org/10.1016/j.biosystems.2013.04.003

ARTICLE IN PRESS

L. Zhang et al. / BioSystems xxx (2013) xxx-xxx

Table 3

Statistical results of QSAR models.

Parameters	Ligand-ba	sed CoMSIA	Receptor-based CoMSIA	
	I	II	III	
q ² a	0.53	0.48	0.60	
$r_{\rm ncv}^2$ b	0.90	0.78	0.92	
SEE ^c	0.26	0.46	0.26	
F ^d	84.22	49.24	70.41	
$r_{\rm pred}^2 e$	0.55	0.56	0.76	
SEPf	0.58	0.70	0.56	
N _c ^g	7	6	6	
r_m^2	0.70	0.60	0.76	
Reverse r_m^2	0.49	0.46	0.66	
Average r_m^2	0.59	0.53	0.71	
Δr_m^2	0.21	0.14	0.10	
Field contribution				
S	0.124	0.107	0.067	
Ε	0.309	0.075	0.199	
Н	0.353	-	0.266	
D	0.213	0.278	0.239	
Α	-	0.351	-	
Mor21m	-	0.035	-	
Mor22e	-	0.067	-	
ALOGP	-	0.086	_	
mor25m	-	-	0.091	
mats5v	-	-	0.138	

^a Cross-validated correlation coefficient using the LOO methods.

^b Non-cross-validated correlation coefficient.

^c Standard error of estimate.

^d Ratio of r_{ncv}^2 explained to unexplained = $R_{ncv}^2/(1 - r_{ncv}^2)$.

^e Predicted correlation coefficient for the test set compounds.

^f Standard error of prediction.

^g Optimal number of principal components.

which proposed that H-bond acceptors at C4 close to the side chain 482 NH groups of Asn253 and His278 could increase the binding activ-483 ity. H-bond donating group is predicted to be favorable in proximity 484 to the substituent of the 2-furyl group at C6 (cyan region), and 485 would functionally deliver good binding potency. In conclusion, the 486 structural requirements of the monocyclic pyrimidine derivatives 487 for good binding affinity are summarized in Fig. 8A as follows: (1) 488 at C6, a limitedly bulky, electronegative and hydrophobic group is 489

Fig. 5. Stdev*coeff (A) steric, (B) electrostatic, (C) hydrophobic,(D) H-bond donor contour maps of ligand-based optimal CoMSIA model. The color code is as follows: (A) green and yellow contours indicate favorable and unfavorable bulky groups, respectively; (B) blue and red contours indicate favorable and unfavorable electropositive groups, respectively; (C) orange and white contours indicate favorable and unfavorable hydrophobic groups, respectively; (D) cyan and purple contours indicate favorable and unfavorable hydrophobic groups, respectively; (D) cyan and purple contours indicate favorable and unfavorable H-bond donor groups, respectively. The compound 92 in ball and stick is displayed as a reference. (Red atom: oxygen; blue: nitrogen). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Stdev*coeff (A) steric, (B) electrostatic, (C) H-bond donor and (D) H-bond acceptor contour maps of ligand-based optimal CoMSIA model. The color code is as follows: (A) green and yellow contours indicate favorable and unfavorable bulky groups, respectively; (B) blue and red contours indicate favorable and unfavorable electropositive groups, respectively; (C) cyan and purple contours indicate favorable and unfavorable H-bond donor groups, respectively; (D) magenta and red-orange contours indicate favorable and unfavorable H-bond acceptor groups. The compound 111 in ball and stick is displayed as a reference. (Green atom: fluorine; red: oxygen; blue: nitrogen). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

benefic to the inhibitory binding. In most cases, substitution of 2furyl moiety at C6 is favored for high A_{2A} AR affinity and selectivity (Azam et al., 2009). Moreover, simply adding a methyl group to this furan ring can halts the furan metabolism causing the toxicities, and restores the potency of the antagonists (Moorjani et al., 2008). (2) At C2, a small, electronegative and hydrophilic substituent would be favoravle for the binding activity. (3) To display an appreciable activity, a limitedly bulky group at C4 should bear both electronegativity and hydrophilic interactions but not the role of H-bond donor. (4) The non-H groups at C5 such as methyl would affect the inhibitory activity in an unfavorable way.

In the maps of the model II (Fig. 6), the green contour at N7 of purine ring shows the interest of a substituent of an appropriate length on this moiety, while the yellow contour there indicates that (R)-substituent would lead to steric forbiddance. Similarly, other unfavorable region at the upper of the group at C6 also indicates the steric bump of bulky group with Asn253. The close inspection of the electrostatic contour allows a straightforward interpretation of the influence of substituent electronic properties on activity. It properly describes the high binding affinity of triazolo[4,5-d]pyrimidine derivatives in comparison to pyrazolo[3,4-d]pyrimidine, pyrrolo[2,3-d]pyrimidine and purine analogs. In the H-bond donor and acceptor fields, cyan contours furnish a sound for the preference of the donating group at C2 of pyrimidine ring and para-position of benzene ring, and is in close agreement with the docking result. However, the purple and magenta contours there offer readily interpretation that H-bond acceptor contributes positively to the biological activity, which also is consistent with the H-bond interactions between the group and Ala59, Phe62, Ile80 and Ala63. Acceptor groups include any functional group possessing sufficient electron density to participate in a hydrogen bond which is an important factor for the activities of the A_{2A} antagonists (Lu et al., 2011). Based on the above discussion,

512

513

514

515

516

517

518

519

520

521

522

Please cite this article in press as: Zhang, L., et al., Insight into the binding mode and the structural features of the pyrimidine derivatives as human A_{2A} adenosine receptor antagonists. BioSystems (2013), http://dx.doi.org/10.1016/j.biosystems.2013.04.003

ARTICLE IN PRESS

L. Zhang et al. / BioSystems xxx (2013) xxx-xxx

the structural effects of the bicyclic derivatives on binding affinity 523 are depicted in Fig. 8B as follows: (1) at C6 of the pyrimidine ring, 524 525 a minor and electronegative group should play a role of H-bond 526 acceptor to obtain an appreciable activity. Interestingly, the furan moiety in this series of compounds is known to be very impor-527 tant for high affinity binding, since its replacement with other 528 nonfuran-containing heterocycles has showed reduced affinity for 520 the A_{2A} receptor (Cheong et al., 2011; Shah and Hodgson, 2010). (2) 530 At C2 of the pyrimidine ring, a H-bond donating group would func-531 tionally deliver good potency. Generally, compounds substituted 532 with an amino group in the C2 position have higher affinity for A_{2A} 533 AR rather than with a thiol or thiomethyl substituents (Azam et al., 534 2009). (3) at N3 of ring B (shown as in Fig. 8B), a limitedly bulky 535 group as H-bond acceptor would affect the inhibitory activity 536 in an favorable way. An aromatic ring attached to the nitrogen 537 there is essential for both affinity and selectivity at the A_{2A} 538 antagonists. 539

In the maps of the model III (Fig. 7), the green area indicates the 540 favorable effect of bulky group, while the yellow area suggests the 541 boundaries of the pocket hosting thieno[3,2-d]pyrimidine and can 542 be superposed perfectly onto side chains of Glu169, Met177 and 543 544 Met270. Adding a methyl in position-5 of thiazolyl group would lead to steric bump with the side chains of Met177 to cause a 545 loss of activity. Additionally, the electrostatic contour offers readily 546 interpretable electronegative signal by red polyhedral, indicat-547 ing that the electronegative substituent at the pyrimidine ring is 548 benefic for the binding affinity. The white contours are mapped well 549 with the hydrophilic surface of the active site including Glu169, 550 Asn181, Asn253 and Cys254 which likely interact with the groups 551 at C2 and C6. Moreover, the H-bond maps suggest the H-bond 552 accepting group at C2 and donating group at C6 of the pyrimi-553 dine ring are preferable for the binding by interacting with the side 554 chain imidazole group of His250 and the amino groups of Asn253 555 and Glu169. Thus, the structural requirements of the thieno[3,2-556 d]pyrimidines derivatives for good binding affinity are depicted in 557 558 Fig. 8C as follows: (1) at C6 of the pyrimidine ring, an electronegative, hydrophilic and limitedly bulky group as H-bond donor is 559 favorable for the increase of the inhibitory activity. (2) At C2 of the 560 pyrimidine ring, a small and electronegative group as H-bond donor 561 is well tolerated and would functionally deliver good potency. A2A 562 563 AR affinity and selectivity over A₁ AR is particularly noteworthy when the C-2 substituent is a small lipophilic group such as alkyl 564 or dialkylamino (Azam et al., 2009).

Fig. 7. Stdev*coeff (A) steric, (B) H-bond donor, (C) electrostatic, (D) hydrophobic contour maps of receptor-based optimal CoMSIA model. The color code is as follows: (A) green and yellow contours indicate favorable and unfavorable bulky groups, respectively; (B) cyan and purple contours indicate favorable and unfavorable H-bond donor groups, respectively; (C) blue and red contours indicate favorable and unfavorable and unfavorable electropositive groups, respectively; (D) orange and white contours indicate favorable and unfavorable hydrophobic groups, respectively. The compound 45 in ball and stick is displayed as a reference. (yellow atom: sulfur; blue: nitrogen). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Overall, to all the monocyclic and bicyclic pyrimidine derivatives, changes in the inhibitory activity could be rationalized by modifying the compounds based on the key structural features: (i) a minor/large group with negative charge at C2/C6 of the pyrimidine ring respectively contribute favorably to the biological activity of the antagonist. Interestingly, a group like N—H at C2 is required to provide a H-bond donor for a good interaction with all the adenosine receptors (Azam et al., 2009). (ii) Especially for the bicyclic derivatives, the bicyclic contain the higher electron density of the ring, then the more potent for the antagonists.

565

566

567

568

569

570

571

572

573

Fig. 8. Structural features obtained from optimal CoMSIA model. (A): I model (X = C/N); (B): II model (X = C/N, Y = C/N); (C): III model. The common substructure is shown in bold.

Please cite this article in press as: Zhang, L., et al., Insight into the binding mode and the structural features of the pyrimidine derivatives as human A_{2A} adenosine receptor antagonists. BioSystems (2013), http://dx.doi.org/10.1016/j.biosystems.2013.04.003

L. Zhang et al. / BioSystems xxx (2013) xxx-xxx

4. Conclusion 574

There is now accumulating evidence that A2A AR antagonists 575 may provide a novel therapy for the treatment of Parkinson's dis-576 ease with lower risk of dyskinesias. The present study confirms and 577 reinforces the validity of the interaction mode of A2A AR with mono-578 cyclic and bicyclic pyrimidine derivatives, and provides insights 570 into the structural requirements of the derivatives for high A_{2A} 580 AR affinity. The pyrimidine derivatives are positioned toward TM2, 581 3, 5, 6 and 7 of A_{2A} AR, anchored by the aromatic stacking with 582 Phe168(5.29), hydrogen bonding interactions with Glu169(5.30) 583 and Asn253(6.55), as well as non-polar interactions with the recep-584 tor. Additionally, the derivatives have an aromatic group extending 585 deeper into the binding pocket and/or flexible extensions toward 586 the extracellular opening of the pocket. The comparison of the 587 binding poses for the above antagonists with ZM241385, XAC 588 and caffeine in the crystal structure reveals similarities in the 589 side chains of amino acid residues involved in ligand recognition. 590 Moreover, the calculated binding free energies with the biggest 591 contribution of van der Waals confirm the reasonableness of the 592 binding modes. On the other hand, the ligand/receptor-based 3D-593 594 QSAR studies on the derivatives were performed using CoMFA and CoMSIA tools with the addition of molecular descriptors. The 595 models display high statistical quality and the good consistency 596 between the maps and the docking results, which add the con-597 fidence in their utility for predicting the binding affinity of the 598 antagonists. Moreover, the r_m^2 metrics suggest the predictability of 599 the models. The resulting contour maps correlate well with the 600 structural features of the pyrimidine derivatives as the above dis-601 cussions, which might be helpful in future rational design of novel 602 candidate for the potential treatment of Parkinson's disease. 603

Acknowledgements 604

This work is financially supported by State Key Laboratory of 605 the Discovery and Development of Novel Pesticide (No. 201101). 606 This research is also supported by high-performance computing 607 platform of Northwest A & F University. 608

Appendix A. Supplementary data 609

Supplementary data associated with this article can be 610 found, in the online version, at http://dx.doi.org/10.1016/j. 611 biosystems.2013.04.003. 612

References 613

617

618

619

620

621

622

623

626

627

628

629

631

632

634

635

636

- Azam, F., Ibn-Rajab, I.A., Alruiad, A.A., 2009. Adenosine A2A receptor antagonists 614 as novel anti-Parkinsonian agents: a review of structure-activity relationships. 615 Pharmazie 64 (12), 771-795. 616
 - Ballesteros, J.A., Weinstein, H., 1995. [19] Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. In: Stuart, C. (Ed.), Methods in Neurosciences, vol. 25. Academic Press, pp. 366-428.
 - Bara-Jimenez, W., Sherzai, A., Dimitrova, T., Favit, A., Bibbiani, F., Gillespie, M., Morris, M.J., Mouradian, M.M., Chase, T.N., 2003. Adenosine A(2A) receptor antagonist treatment of Parkinson's disease. Neurology 61 (3), 293-296.
- 624 Berendsen, H.J., Grigera, J.R., Strsstsma, T.P., 1987. The missing term in effective pair potentials. The Journal of Physical Chemistry 91, 6269-6271. 625
 - Blackburn, M.R., Vance, C.O., Morschl, E., Wilson, C.N., 2009. Adenosine receptors and inflammation. Handbook of Experimental Pharmacology 193, 215-269.
 - Bussi, G., Donadio, D., Parrinello, M., 2007. Canonical sampling through velocity rescaling. The Journal of Physical Chemistry 126 (1), 014101.
- Carlsson, J., Yoo, L., Gao, Z.G., Irwin, J.J., Shoichet, B.K., Jacobson, K.A., 2010. 630 Structure-based discovery of A2A adenosine receptor ligands. Journal of Medicinal Chemistry 53 (9), 3748-3755. 633
 - Case, D.A.D., Cheatham, T.A., Simmerling, T.E., Wang, C.L., Duke, J., Luo, R.E., Crowley, R., Walker, M., Zhang, R.C., Merz, W., Wang, K.M., Hayik, B., Roitberg, S., Seabra, A., Kolossvary, G., Wong, I., Paesani, K.F., Vanicek, F., Wu, J., Brozell, X., Steinbrecher, S.R., Gohlke, T., Yang, H., Tan, L., Mongan, C., Hornak, J., Cui, V., Mathews, G.,

Seetin, D.H., Sagui, M.G., Babin, C., Kollman, V.P.A., 2008. AMBER 10. University of California, San Francisco.

- Cheong, S.L., Venkatesan, G., Paira, P., Jothibasu, R., Mandel, A.L., Federico, S., Spalluto, G., Pastorin, G., 2011. Pyrazolo derivatives as potent adenosine receptor antagonists: an overview on the structure-activity relationships. International Journal of Medicinal Chemistry, http://dx.doi.org/10.1155/2011/480652.
- Clark, M., Cramer, R.D., Van Opdenbosch, N., 1989. Validation of the general purpose tripos 5.2 force field. Journal of Computational Chemistry 10 (8), 982-1012.
- Congreve, M., Andrews, S.P., Dore, A.S., Hollenstein, K., Hurrell, E., Langmead, C.J., Mason, J.S., Ng, I.W., Tehan, B., Zhukov, A., Weir, M., Marshall, F.H., 2012. Discovery of 1,2,4-triazine derivatives as adenosine A(2A) antagonists using structure based drug design. Journal of Medicinal Chemistry 55 (5), 1898-1903
- Cristalli, G., Lambertucci, C., Marucci, G., Volpini, R., Dal Ben, D., 2008. A2A adenosine receptor and its modulators: overview on a druggable GPCR and on structure-activity relationship analysis and binding requirements of agonists and antagonists. Current Pharmaceutical Design 14 (15), 1525-1552.
- Culler, D.E., Karp, R.M., Patterson, D., Sahay, A., Santos, E.E., Schauser, K.E., Subramonian, R., Eicken, T., 1996. Log P: a practical model of parallel computation. Communications of the ACM 39 (11), 78-85.
- Darden, T., York, D., Pedersen, L., 1993. Particle mesh Ewald an N.Log(N) method for Ewald sums in large systems. Journal of Chemical Physics 98 (12), 10089-10092.
- Dore, A.S., Robertson, N., Errey, J.C., Ng, I., Hollenstein, K., Tehan, B., Hurrell, E., Bennett, K., Congreve, M., Magnani, F., Tate, C.G., Weir, M., Marshall, F.H., 2011. Structure of the adenosine A(2A) receptor in complex with ZM241385 and the xanthines XAC and caffeine. Structure 19 (9), 1283-1293.
- Drabczynska, A., Zygmunt, M., Sapa, J., Filipek, B., Muller, C.E., Kiec-Kononowicz, K., 2011. Antiparkinsonian effects of novel adenosine A(2A) receptor antagonists. Archiv der Pharmazie 344 (1), 20-27.
- Fenu, S., Pinna, A., Ongini, E., Morelli, M., 1997. Adenosine A2A receptor antagonism potentiates L-DOPA-induced turning behaviour and c-fos expression in 6-hydroxydopamine-lesioned rats. European Journal of Pharmacology 321 (2), 143-147.
- Fishman, P., Bar-Yehuda, S., Synowitz, M., Powell, J.D., Klotz, K.N., Gessi, S., Borea, P.A., 2009. Adenosine receptors and cancer. Handbook of Experimental Pharmacology 193, 399-441.
- Frau, L., Borsini, F., Wardas, I., Khairnar, A.S., Schintu, N., Morelli, M., 2011, Neuroprotective and anti-inflammatory effects of the adenosine A(2A) receptor antagonist ST1535 in a MPTP mouse model of Parkinson's disease. Synapse 65 (3), 181 - 188.
- Gasteiger, J., Marsili, M., 1980. Iterative partial equalization of orbital electronegativity-a rapid access to atomic charges. Tetrahedron 36 (22). 3219-3228
- Gillespie, R.J., Adams, D.R., Bebbington, D., Benwell, K., Cliffe, I.A., Dawson, C.E., Dourish, C.T., Fletcher, A., Gaur, S., Giles, P.R., Jordan, A.M., Knight, A.R., Knutsen, L.J., Lawrence, A., Lerpiniere, J., Misra, A., Porter, R.H., Pratt, R.M., Shepherd, R., Upton, R., Ward, S.E., Weiss, S.M., Williamson, D.S., 2008a. Antagonists of the human adenosine A2A receptor. Part 1. Discovery and synthesis of thieno[3,2-d]pyrimidine-4-methanone derivatives. Bioorganic & Medicinal Chemistry Letters 18 (9), 2916-2919.
- Gillespie, R.J., Cliffe, I.A., Dawson, C.E., Dourish, C.T., Gaur, S., Giles, P.R., Jordan, A.M., Knight, A.R., Lawrence, A., Lerpiniere, J., Misra, A., Pratt, R.M., Todd, R.S., Upton, R., Weiss, S.M., Williamson, D.S., 2008b. Antagonists of the human adenosine A2A receptor. Part 2. Design and synthesis of 4-arylthieno[3,2d]pyrimidine derivatives. Bioorganic & Medicinal Chemistry Letters 18 (9), 2920-2923.
- Gillespie, R.J., Cliffe, I.A., Dawson, C.E., Dourish, C.T., Gaur, S., Jordan, A.M., Knight, A.R., Lerpiniere, J., Misra, A., Pratt, R.M., Roffey, J., Stratton, G.C., Upton, R., Weiss, S.M., Williamson, D.S., 2008c. Antagonists of the human adenosine A2A receptor. Part 3: Design and synthesis of pyrazolo[3,4-d]pyrimidines, pyrrolo[2,3-d]pyrimidines and 6-arylpurines. Bioorganic & Medicinal Chemistry Letters 18 (9), 2924-2929.
- Gillespie, R.J., Bamford, S.J., Botting, R., Comer, M., Denny, S., Gaur, S., Griffin, M., Jordan, A.M., Knight, A.R., Lerpiniere, J., Leonardi, S., Lightowler, S., McAteer, S., Merrett, A., Misra, A., Padfield, A., Reece, M., Saadi, M., Selwood, D.L., Stratton, G.C., Surry, D., Todd, R., Tong, X., Ruston, V., Upton, R., Weiss, S.M., 2009a. Antagonists of the human A(2A) adenosine receptor. 4. Design, synthesis, and preclinical evaluation of 7-aryltriazolo[4,5-d]pyrimidines. Journal of Medicinal Chemistry 52 (1), 33-47.
- Gillespie, R.J., Bamford, S.J., Clay, A., Gaur, S., Haymes, T., Jackson, P.S., Jordan, A.M., Klenke, B., Leonardi, S., Liu, J., Mansell, H.L., Ng, S., Saadi, M., Simmonite, H., Stratton, G.C., Todd, R.S., Williamson, D.S., Yule, I.A., 2009b. Antagonists of the human A(2A) receptor. Part 6: Further optimization of pyrimidine-4-carboxamides. Bioorganic & Medicinal Chemistry 17 (18), 6590-6605.
- Gillespie, R.J., Bamford, S.J., Gaur, S., Jordan, A.M., Lerpiniere, J., Mansell, H.L., Stratton, G.C., 2009c. Antagonists of the human A(2A) receptor. Part 5: Highly bio-available pyrimidine-4-carboxamides. Bioorganic & Medicinal Chemistry Letters 19 (10), 2664-2667.
- Gillespie, R.J., Bamford, S.J., Botting, R., Comer, M., Denny, S., Gaur, S., Griffin, M., Jordan, A.M., Knight, A.R., Lerpiniere, J., Leonardi, S., Lightowler, S., McAteer, S., Merrett, A., Misra, A., Padfield, A., Reece, M., Saadi, M., Selwood, D.L., Stratton, G.C., Surry, D., Todd, R., Tong, X., Ruston, V., Upton, R., Weiss, S.M., 2009d. Antagonists of the Human A(2A) Adenosine Receptor. 4. Design, synthesis, and preclinical evaluation of 7-aryltriazolo[4,5-d]pyrimidines. Journal of Medicinal Chemistry 52 (1), 33-47.
- Headrick, J.P., Lasley, R.D., 2009. Adenosine receptors and reperfusion injury of the heart. Handbook of Experimental Pharmacology 193, 189-214.

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

720

721

722

Please cite this article in press as: Zhang, L, et al., Insight into the binding mode and the structural features of the pyrimidine derivatives as human A2A adenosine receptor antagonists. BioSystems (2013), http://dx.doi.org/10.1016/j.biosystems.2013.04.003

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

751

753

754

755

757

758

759

760

761

762

763

L. Zhang et al. / BioSystems xxx (2013) xxx-xxx

- Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E., 2008. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation 4 (3), 435-447.
- Hummer, G., Rasaiah, J.C., Noworyta, J.P., 2001. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414 (6860), 188-190.
- Ivanov, A.A., Palyulin, V.A., Zefirov, N.S., 2007. Computer aided comparative analysis of the binding modes of the adenosine receptor agonists for all known subtypes of adenosine receptors. Journal of Molecular Graphics and Modelling 25 (5), 740-754.
- Ivanov, A.A., Barak, D., Jacobson, K.A., 2009. Evaluation of homology modeling of G-protein-coupled receptors in light of the A(2A) adenosine receptor crystallographic structure. Journal of Medicinal Chemistry 52 (10), 3284-3292.
- Jaakola, V.P., Griffith, M.T., Hanson, M.A., Cherezov, V., Chien, E.Y., Lane, J.R., Ijzerman, A.P., Stevens, R.C., 2008. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322 (5905), 1211-1217.
- Jaakola, V.P., Lane, J.R., Lin, J.Y., Katritch, V., IJzerman, A.P., Stevens, R.C., 2010. Identification and characterization of amino acid residues essential for human A2A adenosine receptor: ZM241385 binding and subtype selectivity. The Journal of Biological Chemistry, http://dx.doi.org/10.1074/jbc.M109.096974.
- Jenner, P., Mori, A., Hauser, R., Morelli, M., Fredholm, B.B., Chen, J.F., 2009. Adenosine, adenosine A 2A antagonists, and Parkinson's disease. Parkinsonism & Related Disorders 15 (6), 406-413.
- Kanda, T., Jackson, M.J., Smith, L.A., Pearce, R.K., Nakamura, J., Kase, H., Kuwana, Y., Jenner, P., 1998. Adenosine A2A antagonist: a novel antiparkinsonian agent that does not provoke dyskinesia in parkinsonian monkeys. Annals of Neurology 43 $(4), 507 - \hat{5}13.$
- Kase, H., Aoyama, S., Ichimura, M., Ikeda, K., Ishii, A., Kanda, T., Koga, K., Koike, N., Kurokawa, M., Kuwana, Y., Mori, A., Nakamura, J., Nonaka, H., Ochi, M., Saki, 750 M., Shimada, J., Shindou, T., Shiozaki, S., Suzuki, F., Takeda, M., Yanagawa, K., Richardson, P.J., Jenner, P., Bedard, P., Borrelli, E., Hauser, R.A., Chase, T.N., 2003. 752 Progress in pursuit of therapeutic A2A antagonists: the adenosine A2A receptor selective antagonist KW6002: research and development toward a novel nondopaminergic therapy for Parkinson's disease. Neurology 61 (11 (Suppl. 6)), S97-S100. 756
 - Kim, J., Wess, J., van Rhee, A.M., Schoneberg, T., Jacobson, K.A., 1995. Site-directed mutagenesis identifies residues involved in ligand recognition in the human A2a adenosine receptor. Journal of Biological Chemistry 270 (23), 13987-13997.
 - Kim, S.K., Gao, Z.G., Van Rompaey, P., Gross, A.S., Chen, A., Van Calenbergh, S., Jacobson, K.A., 2003. Modeling the adenosine receptors: comparison of the binding domains of A2A agonists and antagonists. Journal of Medicinal Chemistry 46 (23), 4847-4859.
- Kiran, K.M., Annapurna, R.C., Prameela, S.N.J., Uma, V., 2012. Pharmacophore map-764 ping and in silico screening to identify new potent leads for A2A adenosine 765 766 receptor, as antagonists. Journal of Receptors and Signal Transduction 32 (2), 102-113. 767
- Knutsen, L.J., Weiss, S.M., 2001. KW-6002 (Kyowa Hakko Kogyo). Current Opinion 768 in Investigational Drugs 2 (5), 668-673. 769
- Langmead, C.J., Andrews, S.P., Congreve, M., Errey, J.C., Hurrell, E., Marshall, F.H., 770 Mason, I.S., Richardson, C.M., Robertson, N., Zhukov, A., Weir, M., 2012, Iden-771 tification of novel adenosine A(2A) receptor antagonists by virtual screening. 772 Journal of Medicinal Chemistry 55 (5), 1904–1909. 773
- Lu, P., Wei, X., Zhang, R., Yuan, Y., Gong, Z., 2011. Prediction of the binding affinities of 774 775 adenosine A2A receptor antagonists based on the heuristic method and support vector machine. Medicinal Chemistry Research 20 (8), 1220-1228. 776
- Michielan, L., Bacilieri, M., Schiesaro, A., Bolcato, C., Pastorin, G., Spalluto, G., Cac-777 ciari, B., Klotz, K.N., Kaseda, C., Moro, S., 2008. Linear and nonlinear 3D-QSAR 778 779 approaches in tandem with ligand-based homology modeling as a computational strategy to depict the pyrazolo-triazolo-pyrimidine antagonists binding 780 781 site of the human adenosine A2A receptor. Journal of Chemical Information and 782 Modeling 48 (2), 350-363.
- 783 Moorjani, M., Zhang, X., Chen, Y., Lin, E., Rueter, J.K., Gross, R.S., Lanier, M.C., Tellew, J.E., Williams, J.P., Lechner, S.M., Malany, S., Santos, M., Ekhlassi, P.,

Castro-Palomino, J.C., Crespo, M.I., Prat, M., Gual, S., Diaz, J.L., Saunders, J., Slee, D.H., 2008. 2,6-Diaryl-4-phenacylaminopyrimidines as potent and selective adenosine A(2A) antagonists with reduced hERG liability. Bioorganic & Medicinal Chemistry Letters 18 (4), 1269-1273.

- Morelli, M., Carta, A.R., Jenner, P., 2009. Adenosine A2A receptors and Parkinson's disease. Handbook of Experimental Pharmacology 193, 589-615.
- Morris, G.M., Goodsell, D.S., Huey, R., Olson, A.J., 1996. Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4. Journal of Computer-Aided Molecular Design 10 (4), 293-304.
- Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J., 1998. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry 19 (14), 1639-1662.
- Ojha, P.K., Mitra, I., Das, R.N., Roy, K., 2011. Further exploring rm2 metrics for validation of QSPR models. Chemometrics and Intelligent Laboratory Systems 107, 194-205.
- Ongini, E., Adami, M., Ferri, C., Bertorelli, R., 1997. Adenosine A2A receptors and neuroprotection. Annals of the New York Academy of Sciences 825, 30-48.
- Osterberg, F., Morris, G.M., Sanner, M.F., Olson, A.J., Goodsell, D.S., 2002. Automated docking to multiple target structures: incorporation of protein mobility and structural water heterogeneity in AutoDock. Proteins 46 (1), 34-40.
- Parrinello, M.R., 1981. A polymorphic transitions in single crystals: a new molecular dynamics method. Journal of Applied Physics 52 (12), 7182-7190.
- Richardson, P.J., Kase, H., Jenner, P.G., 1997. Adenosine A(2A) receptor antagonists as new agents for the treatment of Parkinson's disease. Trends in Pharmacological Sciences 18 (9), 338-344.
- Roy, K., Chakraborty, P., Mitra, I., Ojha, P.K., Kar, S., Das, R.N., 2013. Some case studies on application of r_m^2 metrics for judging quality of QSAR predictions: emphasis on scaling of response data. Journal of Computational Chemistry 34, 1071-1082, http://dx.doi.org/10.1002/jcc.23231.
- Roy, K., Mitra, I., 2012. On the use of the metric r_m^2 as an effective tool for validation of QSAR models in computational drug design and predictive toxicology. Mini-Reviews in Medicinal Chemistry 12, 491-504.
- Roy, K., Mitra, I., Kar, S., Ojha, P.K., Das, R.N., Kabir, H., 2012. Comparative studies on some metrics for external validation of QSPR models. Journal of Chemical Information and Modeling 52, 396-408.
- Sanner, M.F., Olson, A.J., Spehner, J.C., 1966. Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38 (3), 305-320.
- Sali, A., Blundell, T.L., 1993. Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology 234 (3), 779-815.
- Sauer, R., Maurinsh, J., Reith, U., Fulle, F., Klotz, K.N., Muller, C.E., 2000. Water-soluble phosphate prodrugs of 1-propargyl-8-styrylxanthine derivatives, A(2A)-selective adenosine receptor antagonists. Journal of Medicinal Chemistry 43(3) 440-448
- Schwarzschild, M.A., Agnati, I., Fuxe, K., Chen, I.F., Morelli, M., 2006, Targeting adenosine A2A receptors in Parkinson's disease. Trends in Neurosciences 29 (11), 647-654.
- Shah, U., Hodgson, R., 2010. Recent progress in the discovery of adenosine A(2A) receptor antagonists for the treatment of Parkinson's disease. Current Opinion in Drug Discovery & Development 13 (4), 466-480.
- Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A., 2004. Development and testing of a general amber force field. Journal of Computational Chemistry 25 (9), 1157-1174.
- Wang, X., Yang, W., Xu, X., Zhang, H., Li, Y., Wang, Y., 2010. Studies of benzothiadiazine derivatives as hepatitis C virus NS5B polymerase inhibitors using 3D-QSAR, molecular docking and molecular dynamics. Current Medicinal Chemistry 17 (25) 2788-2803
- Zhang, H.X., Li, Y., Wang, X., Xiao, Z.T., Wang, Y.H., 2011. Insight into the structural requirements of benzothiadiazine scaffold-based derivatives as hepatitis C virus NS5B polymerase inhibitors using 3D-QSAR, molecular docking and molecular dynamics. Current Medicinal Chemistry 18 (26), 4019-4028.

841

842

843

844

784

785

786

787

Please cite this article in press as: Zhang, L., et al., Insight into the binding mode and the structural features of the pyrimidine derivatives as human A2A adenosine receptor antagonists. BioSystems (2013), http://dx.doi.org/10.1016/j.biosystems.2013.04.003